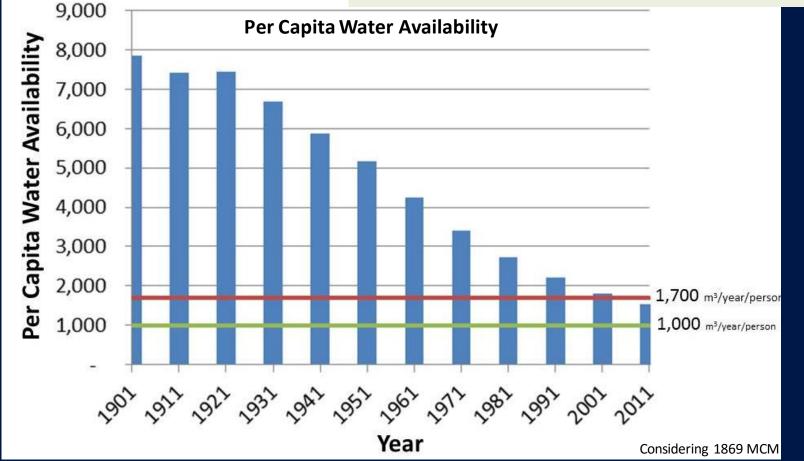


NRSC & CWC Joint Study

B.Simhadri Rao, Sc/Er"SG" Water Resources Group Remote Sensing Applications Area National Remote Sensing Centre



Source: World Water Balance and Water Resources of the Earth UNESCO, 1975

Water Resources of India

Geographical Area = 329 Mha Population (2018) = 1352.6 M Total Cultivable Land = 182.2 Mha Ultimate Irrigation Potential = 140 Mha Irrigation Potential created (upto March 2012)=113.5 Mha

Natural flow in a river basin are considered as Water Resources Potential of a basin

$$R_{N} = R_{O} + R_{IR} + R_{D} + R_{GW} - R_{RI} - R_{RD} - R_{RG} \pm \Delta S + E$$

Where

- R_N natural flow
- R_0 observed flow
- R_{IR} withdrawal for irrigation
- R_D withdrawal for domestic, livestock and industrial requirement
- *R_{GW}* withdrawal of ground water
- R_{RI} return flow from irrigated areas
- R_{RD} return flow from domestic, livestock and industrial withdrawal
- R_{RG} return flow from ground water withdrawal
- ⊿S Change in storage of the reservoirs in the basin
- *E* net evaporation from the reservoirs

Background

- The water resources potential in the river basins of the country has been assessed from time to time by various agencies
- 1901-03; 1946; 1954-60; 1976; 1988; 1993
- These studies adopted empirical formula, aggregation of observed basin terminal flow with upstream abstractions
- NAPCC Water Mission recommended Reassessment of basin wise water situation at regular periodicity, water balance approach, using current data, and assessment of likely future situation

Previous Studies

Irrigation Commission (1901)

- First attempt to assess the average annual flow of all the river systems in India by Irrigation Commission of 1901-03.
- Rainfall records were available, river flows were not available for many of the most important river systems.
- Commission resorted to estimation of river flows by adopting coefficients of runoff

Water Resources Availability = 1,443.2 BCM

* Excluding Burma, Assam and East Bengal

Previous Studies

Dr. A.N. Khosla (1946)

 Developed an empirical relationship between "mean temperature (as an expression for mean evaporation loss) and mean runoff, based on his studies of the flows of Sutlej, Mahanadi and other river systems.

On Monthly basis,
$$R_m = P_m - L_m$$
 $L_m = (T_m - 32)/9.5$
 $R_m = Monthly runoff,$ inches
 $L_m = Monthly rainfall,$ inches
 $L_m = Monthly evaporation loss, inches$
 $T_m = Mean monthly temperature, ^0F$

Areas where monthly data is not available

On Annual basis, $R_a = P_a - XT_a$

Water Resources Availability = 1,673 BCM

Previous Studies

Central Water & Power Commission (1960)

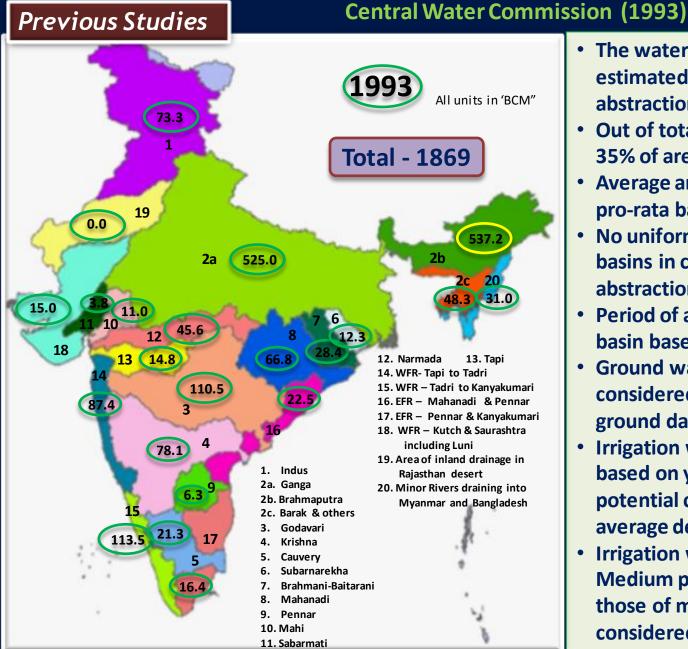
- Based on the statistical analysis of the flow data wherever available.
- Rainfall runoff relationships wherever data were merge.
- Entire country was divided in to 23 basins.
- The Ganga was divided into 10 sub-basins.

Water Resources Availability = 1,881 BCM

Central Water Commission (1988)

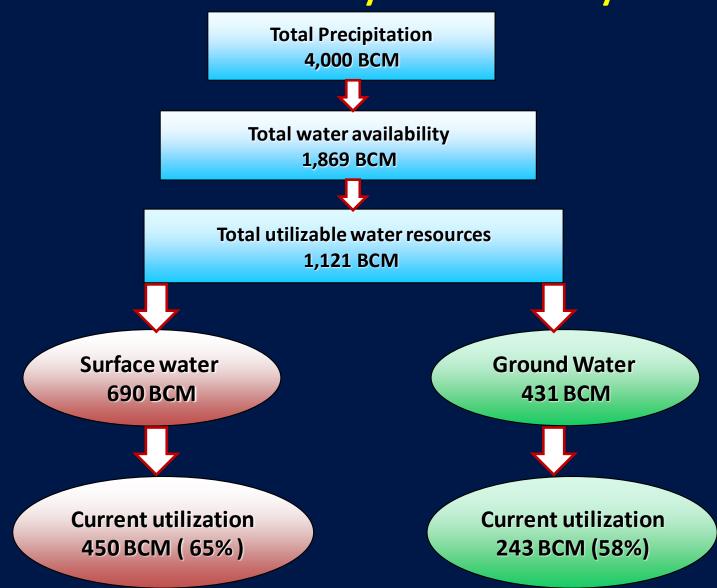
- Observed river flows were corrected for groundwater abstractions.
- Observed river flows were corrected for additional ET due to use of groundwater.
- District-wise estimates of ground water drafts made by CGWB for the years 1983-84 and 1967-68 were used.

Water Resources Availability = 1,880 BCM


Previous Studies

Water Resources Availability = 1,869 BCM

Central Water Commission (1993) Basins - Reassessment not done


Basins - Reassessment done

S.	Basin	Previous Estimate	S. No	Basin			
No			1	Godavari			
1	Indus	Irrigation commission of 1972	2	Krishna			
2	Ganga-Brahmaputra-Meghna	CWC 1988	3	Subernarekha			
3	Narmada	Narmada Water Disputes Tribunal, 1970	4	Brahmani-Baitarani			
4	Mahanadi	CWC 1988		Pennar			
			6	Sabarmati			
5	Cauvery	Cauvery Fact Finding Committee, 1972	7	Mahi			
6	WFR of Kutch and Saurashtra		8	Тарі			
	including Luni		9	WFR from Tapi to Tadri			
7	Area of Inland Drainage in Rajasthan Desert		10	WFR from Tadri to Kanyakumari			
8	Minor Rivers		11	EFR from Mahanadi and Pennar			
	draining into Myanmar and Bangladesh.		12	EFR from Pennar and Kanyakumari			

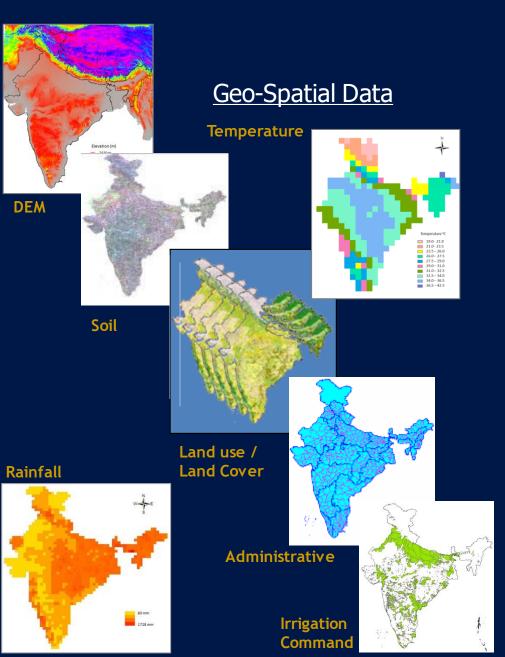
- The water resources potential was estimated by correcting for upstream abstractions to the observed flows
- Out of total area, assessment done for 35% of area (12 out of 20 basins)
- Average annual flow is computed on pro-rata basis from terminal site
- No uniform procedure for all the basins in computing the upstream abstractions
- Period of assessment varied for each basin based on data availability
- Ground water abstractions are considered for basins only where ground data was available
- Irrigation withdrawals was calculated based on year wise irrigation potential created assuming an average delta
- Irrigation withdrawals of Major and Medium projects were considered, those of minor schemes were not considered

Water Availability In The Country

need ...

- Currently used water resources potential estimates are old (CWC: 1988 & 1993 ; Lumped, Basin scale)
- Significant change in land use / land cover; demographic utilization (Sectoral water utilization and its temporal changes)
- Precipitation (or rainfall), as the primary resource for assessment (Precipitation (and not river flow/ aquifer recharge) constitutes the primary resource for assessment)
- Compute the runoff using process based models (Water balance approach, Hydrology Models)
- Take advantage of new technology tools (satellite derived spatial data bases, high density field observations, GIS,)
- Adopt distributed modelling approaches
 (Assessment of water resources at basin/sub-basin scale at required time-step and frequency)

background ...


- NRSC (ISRO) initiated internal effort to assess National level water resources at basin/sub-basin scale using geo-spatial approach (2009)
- NRSC conducted a brain storming session participated by IIT's, IISc, IITM, CWC, NIH (May 2009) (Data requirements, Scale, Methods & Models, Climate change)
- CWC approached NRSC for taking up a collaborative study (July, 2009)
- NRSC and CWC deliberated and evolved a joint activity to take up WRA (Oct, 2009; Jan, 2010) Requirements of CWC were incorporated. (Model, Methods, Framework, Database, Scale, Output were finalized)
- A pilot study is undertaken in two selected river basins (Godavari & Brahmani-Baitarani) (Feb Oct, 2010)
- To be up scaled to National level

Pilot Study - Godavari & Brahmani-Baitarani River basins

key aspects ...

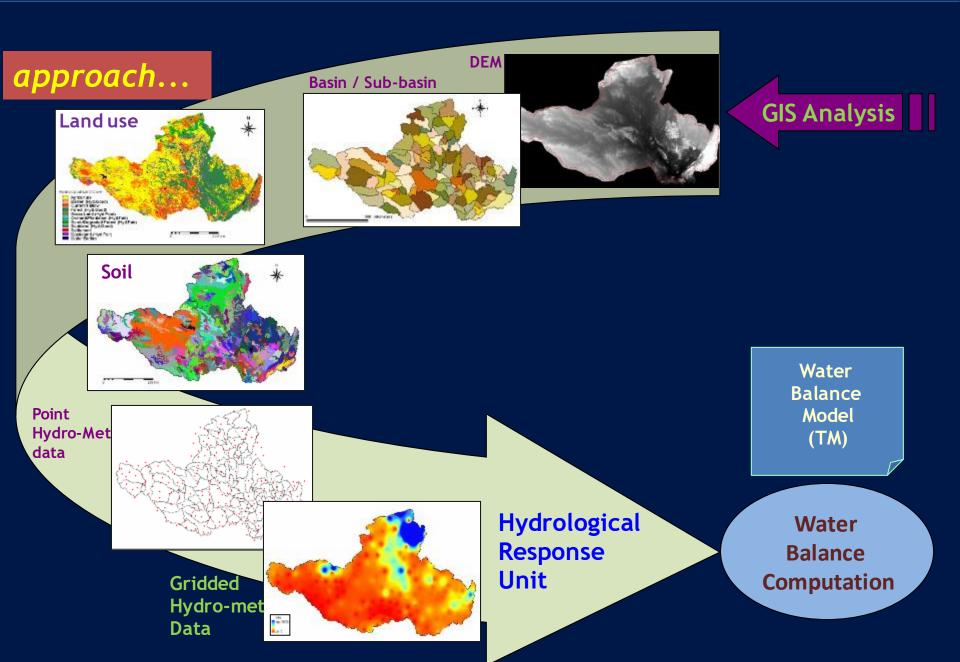
- Water balance approach
- Precipitation, the start point of water budgeting
- Integration of multi-variant terrain parameters in GIS (prevailing land use / land cover, elevation, soil, ...)
- Spatial interpolation/extrapolation of meteorological data (rainfall, hydro-met data, groundwater data, ...)
- Hydrological Response Unit (HRU) level water budgeting
- Monthly time-step, with carry over effect
- Calibration and validation with observed runoff (CWC recorded, ...)
- Basin / sub-basin-wise water resources availability and sectoral utilization

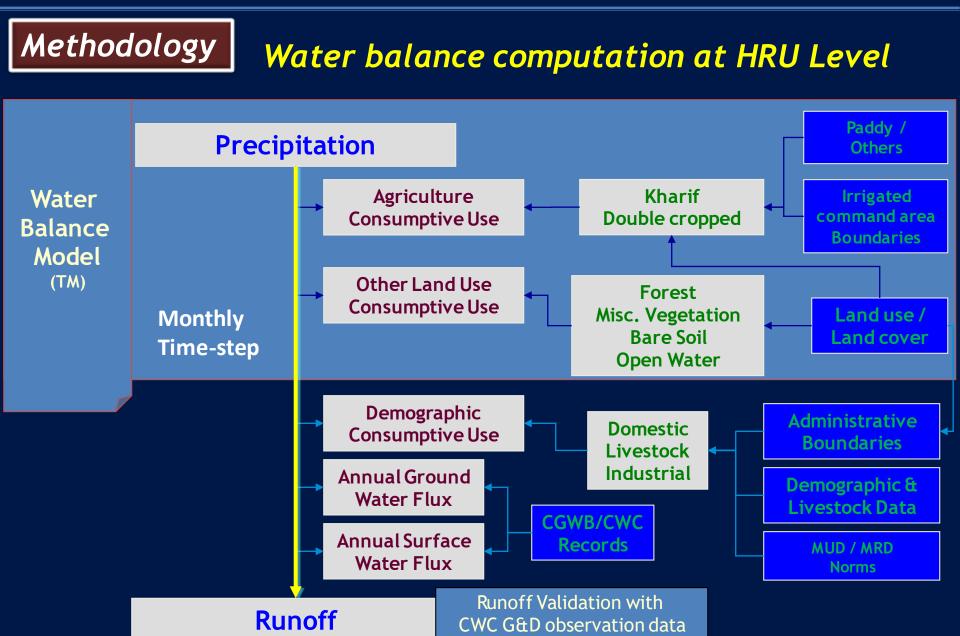
	S. No.	Parameter	Data sources					
data used	1	Terrain	 SRTM DEM CWC Basin maps India-WRIS 					
	2	Soil	 NBSS & LUP Soil Map of India FAO Soil data series 					
	3	Land Use / Land cover	LULC (NRC-250k and India-WRIS)					
	4	Vegetation Coefficients	Field data / Literature					
	5	Irrigation Command	India-WRIS					
	6	Ground water	 CGWB ground water level observations, specific yield maps 					
	7	River discharge	CWC gauge-discharge data (India-WRIS)					
	8	Reservoir data	Reservoir storage (India-WRIS)					
	9	Meteorological data	 IMD Gridded data IMD Surface data IMD AWS/ARG data ISRO AWS data Satellite RF Products (MOSDAC, CPC, TRMM) 					
	10	Demographic Data	 Village Census (SOI) Industrial & Domestic Consumption data/norms 					

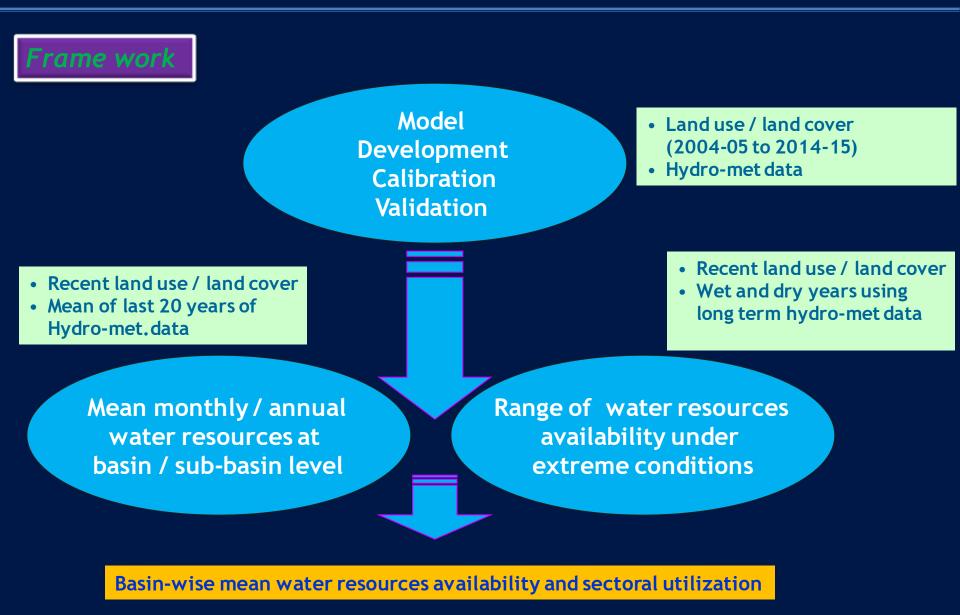
<u>Met Data</u>

data used...

- 0.5 degree Rainfall Grids
- 1 degree Temperature Grids


Field Data


- Reservoir data
- Groundwater data
- River Discharge Data
- Demographic data
- Livestock census data


The study period was 1988-89 to 2007-08 (20 years)

data preparation...

Data	Process
DEM	Basin/Sub-basin boundary and drainage delineation
0.5 degree daily Rainfall Grids	Conversion of daily rainfall to monthly rainfall for each water year wise (June – May)
1 degree daily Temperature Grids	Conversion of daily temperature to mean monthly temperature for each water year wise (June – May)
Mean Monthly Temperature	Monthly PET estimation for water year wise using TM method
Point ground water data	Spatial ground water draft for every year for each sub-basin
Demographic data	Estimation of domestic consumption for each year for all sub-basins
Livestock data	Estimation of Livestock consumption for each year for all sub-basins
Reservoir data	Estimation of carry over surface storage

ET Estimation Methods

Variety of empirical, semi-empirical, and physically-based equations/models generally categorized as:

- Temperature methods
 - Blaney-Criddle
 - Turc's formula
 - Thornthwaite's formula
 - Hargreaves method
- Radiation methods
 - FAO-Radiation
 - Priestly-Tayler method
 - Makkink method
 - Turc-Radation method
- Combination methods
 - FAO-Penmann method
 - P-M method
- Pan evaporation methods

Methodology

Thornthwaite & Mather Method

- Computation of ET in this method is mainly based on temperature data only
- This method uses average monthly temperature, to compute monthly potential Evapo-Transpiration.
- TM method doesn't account for vegetative effect which is most useful parameter in water balance estimations

Monthly Heat Index (j) $j=(tn/5)^{1.514}$

where, j = monthly heat index tn = monthly mean temperature, 0c (where n= 1,2,3.....12).

Annual Heat Index (J) $J = \sum j$

where, a is the cubic function of J $a = (675*10^{-9})J^3 - (771*10^{-7})J^2 + (179*10^{-4})J + 0.492$ Monthly PET PET=16f([[10tn]]/J)^a f = factor, to correct for unequal day length between months

Methodology

Thornthwaite & Mather Method

Computation of Surface Runoff

PET revised = PET * Vegetation Coefficient

P revised = P + (PET revised – P) (only for areas where irrigation support is provided)

APWL = Σ (P revised – PET revised)

```
Soil Moisture = W*e^(((APWL)/W))
```

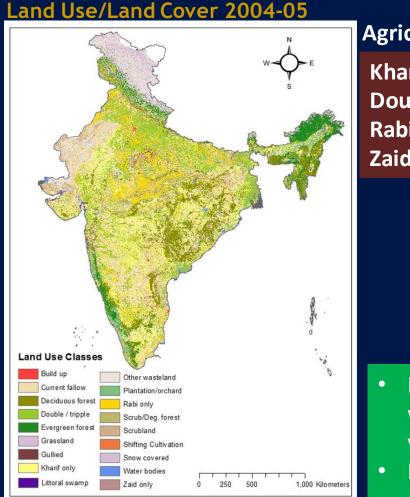
Where, SM = soil moisture, mm APWL = accumulated potential water loss, W = water holding capacity, which has been calculated for the different landuse class and soil texture, mm

AET = PET revised if P > PET revised

 $AET = P + |\Delta SM|$ if P < PET revised

```
Deficit = PET revised - AET
```

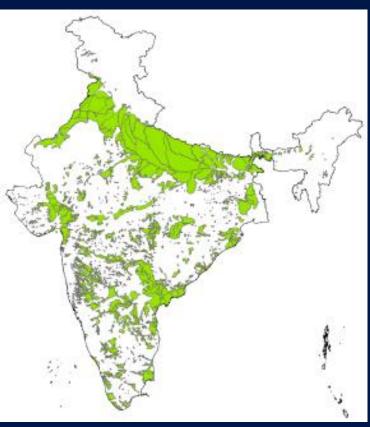
Surplus = $P - (AET + |\Delta SM|)$


Methodology

Estimation of Runoff

	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	Total
Rainfall	75.7	459.7	520.1	146.0	10.0	1.3	0.1	0.0	20.3	1.8	0.0	3.7	1238.6
PET	294.7	156.9	138.8	166.9	134.0	87.0	53.4	46.4	76.3	142.6	285.5	373.6	1956.0
Vegetation Factor	1.1	1.2	1.1	0.9	1.1	1.2	1.1	0.9	0.5	0.8	1.1	0.7	
PET revised	309.4	188.2	152.7	150.2	140.7	104.3	58.8	41.7	38.2	107.0	299.7	261.5	1852.5
P revised	309.4	459.7	520.1	150.2	10.0	1.3	0.1	0.0	20.3	1.8	0.0	3.7	1476.5
Prevised - PETrevised	0.0	271.4	367.5	0.0	-130.8	-103.1	-58.6	-41.7	-17.9	-105.2	-299.7	-257.8	
APWL	0.0	0.0	0.0	0.0	-130.8	-233.8	-292.5	-334.2	-352.1	-457.3	-757.0	-1014.9	
Soil Moisture	0.0	90.0	90.0	90.0	21.0	6.7	3.5	2.2	1.8	0.6	0.0	0.0	
Change SM	0.0	90.0	0.0	0.0	-69.0	-14.4	-3.2	-1.3	-0.4	-1.2	-0.5	0.0	
AET	309.4	188.2	152.7	150.2	78.9	15.6	3.3	1.3	20.7	3.0	0.5	3.7	927.6
Deficit	0.0	0.0	0.0	0.0	61.8	88.7	55.4	40.4	17.5	103.9	299.2	257.8	
Surplus	0.0	181.4	367.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	548.9
Tot.avl.for Runoff	0.0	181.4	458.2	229.1	114.5	57.3	28.6	14.3	7.2	3.6	1.8	0.9	
RO (Runoff)	0.0	90.7	229.1	114.5	57.3	28.6	14.3	7.2	3.6	1.8	0.9	0.4	548.5
Detention	0.0	90.7	229.1	114.5	57.3	28.6	14.3	7.2	3.6	1.8	0.9	0.4	

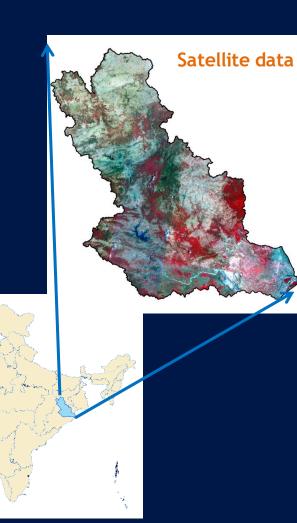
Water Holding Capacity of the soil up to root depth = 90 mm


Role of LU/LC

Agriculture Kharif only Double/Triple Rabi only Zaid only

- Region/District wise crop type variations
- Irrigation support

Irrigation Command Boundaries



Command Area Non-Command Area

2004-05 to 2014-15 (11 years)

Brahmani-Baitarani River Basin

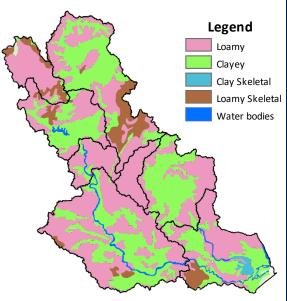
Total Basin Area 50,768 sq.km

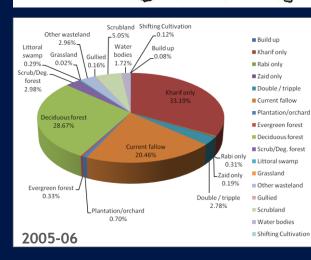
Land use / Land cover

Build up Current fallow Deciduous forest

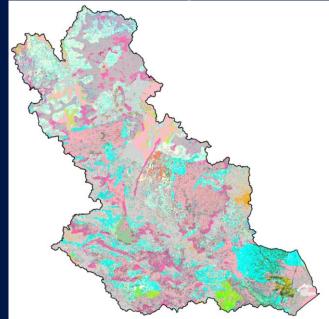
Double / tripple Evergreen forest Grassland

Other wasteland Plantation/orchard Rabi only


Scrub/Deg. forest

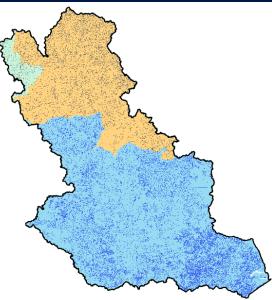

Shifting Cultivation Snow covered Water bodies Zaid only

Gullied Kharifonly Littoral swamp


Geo-Spatial Data Inputs

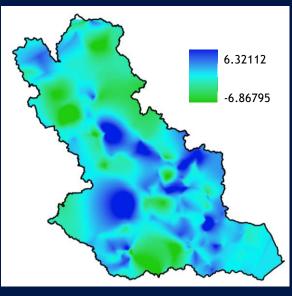
Soils

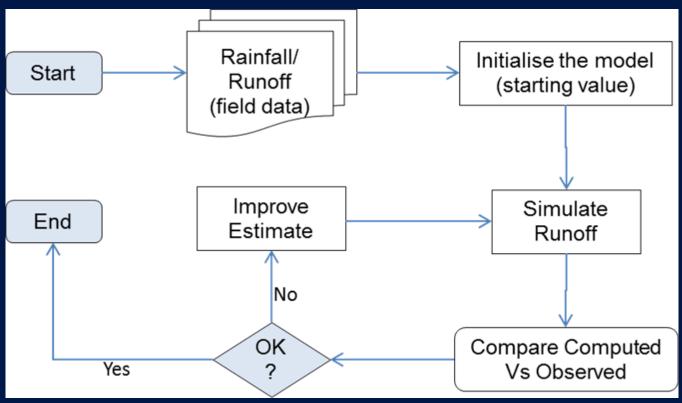
Hydrological Response Units 85 categories


DGWL May 2004

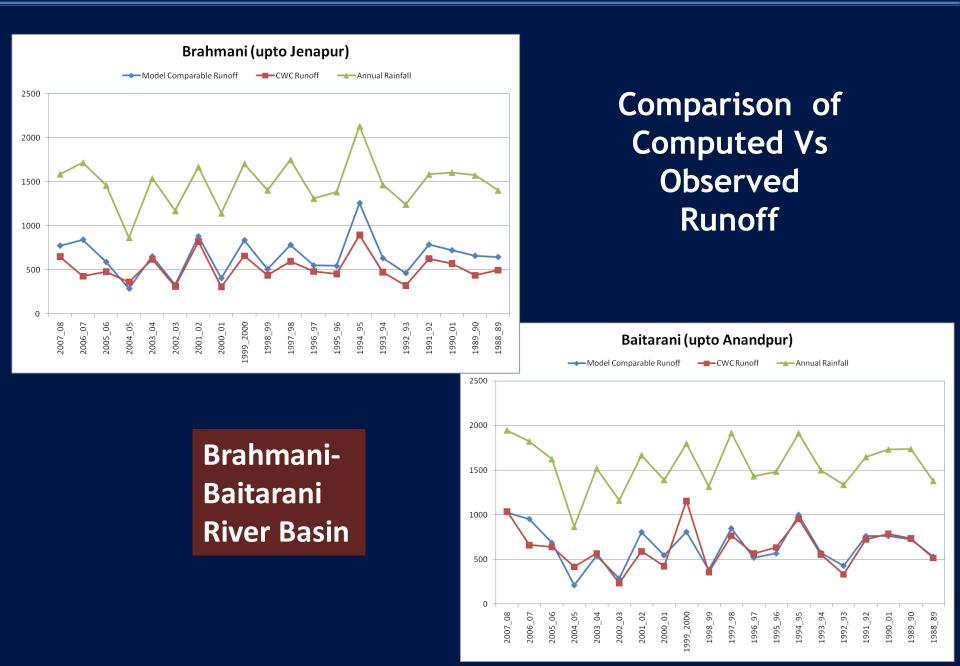
Computation of Fluxes

- Ground water abstractions Domestic Consumption
- Livestock Consumption
- Industrial Consumption
- Surface storage fluxes


Village Census


DGWL May 2005

DGWL Change 2004 to 2005


Calibration and Validation

R Calibrated/computed = (**R** Model - **F** $_{\text{GW}}$ - **F** $_{\text{R}}$ - **F** $_{\text{DIL}}$) \approx **R** O

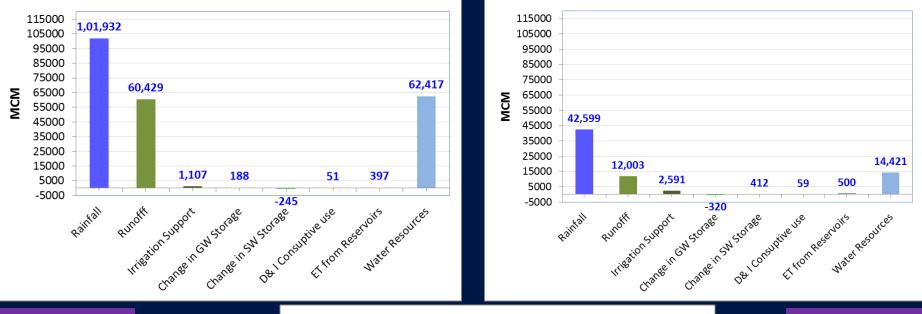
R Calibrated/computed = Calibrated/computed runoff R Model = Model estimated runoff (output from Thornthwaite Mather Model)

F R = Reservoir Flux (- ve sign for drawdown)
FGW = Ground water Flux (- ve sign for drawdown)
F DIL = Domestic, Industrial and Livestock consumption
R 0 = Observed runoff at gauge sites

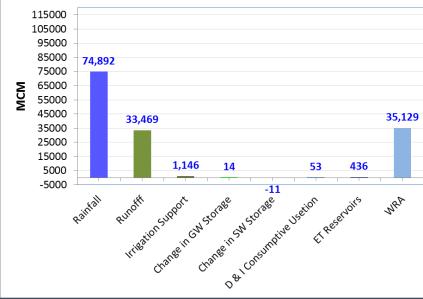
Water Resources Availability

WRA = R Calibrated/computed + IS + E + F DIL + FGW + F R

R Calibrated/computed = Calibrated/computed runoff

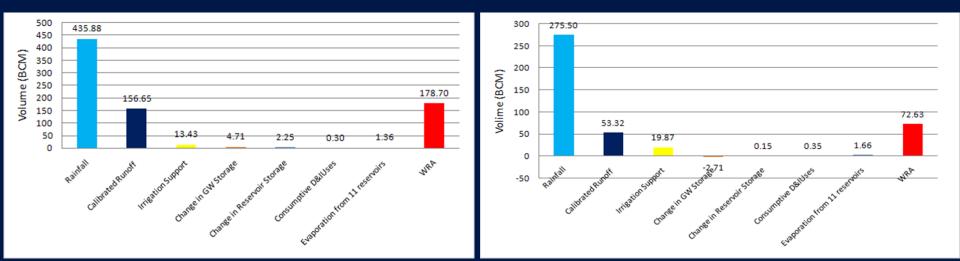

F_R = Reservoir Flux

F_{Gw} = Ground water Flux


- F DIL = Domestic, Industrial and Livestock consumption
- R o = Observed runoff at gauge sites
- E = Evaporation losses from reservoirs
- IS = Irrigation Support

Water Resources Availability was estimated for a period of 20 years (1988-89 to 2007-08)

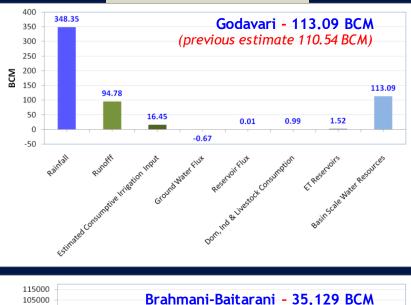
Water Balance components of Brahmani-Baitarani basin


High Rainfall

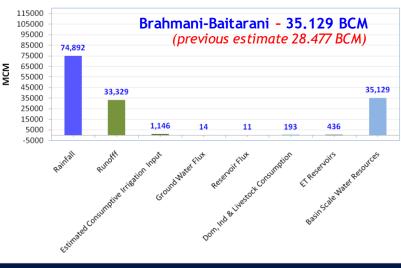
Low Rainfall

Mean of 20 years


Water Balance components of Godavari basin



High Rainfall


Mean of 20 years

Low Rainfall

Pilot Study Results

- Pilot study demonstrated development of geo-spatial data based hydrological modeling approach (in Godavari and Brahmani & Baitarani river basins)
- Expert Committee constituted by MoWR reviewed Pilot Studies and Recommended for upscaling to entire Country to obtain latest update
- CWC through its 10 Regional Basin Organizations to carryout the study
- NRSC/ISRO to provide capacity building through Training and Hand holding
- The study to be carried out for a period of 30 years (1985-2015)

Reassessment of Water Availability in India using Space Inputs

Capacity Building and Technical Collaboration on Reassessment of WA

- NRSC and CWC Signed MoU during Jul, 2016 for Capacity Building and Technical Collaboration by NRSC on Reassessment of Water Availability in India using Satellite Based Inputs to Central Water Commission.
- CWC Procured requisite Computer Hardware and Geo-Spatial Analysis Software for executing the project activities
- The project was initiated from July 2016 with duration of one year.

Reassessment of Water Availability in India using Space Inputs

Capacity Building and Technical Collaboration on Reassessment of WA

- Before start of the Project activity,
 - One week orientation course during May 25-29, 2015 on basics of remote sensing and theoretical aspects of WRA methodology of the project

Identified CWC Nodal officers are requested to collect the following data required for their respective basins and organize them for the next training programme.

- District-wise, year-wise agricultural crop statistics
- Region-specific crop coefficients, root depth, Soil AWC data
- Two-week capacity building programme during October 05-16, 2015 on WRA methodological steps with full-fledged hands on exercise
 - Using field discharge data collected by CWC Officers for identified one discharge location under each basin and corresponding sub-basin was chosen subsequent WRA methodology for hands on exercises.
 - End-to-end exercise of WRA assessment was carried by CWC Officers for a selected sub-basin/catchment in each basin

Capacity Building and Technical Collaboration on Reassessment of WA

- **NRSC** provided the following Geo-Spatial data sets to CWC Engineers
 - 1) Basin boundary shape file
 - 2) Digital elevation model (Cartosat-1 & SRTM)
 - 3) Land Use/Land Cover (56m resolution, 2004-05 to 2014-15; 11 years)
 - 4) Soil map
 - 5) Village boundary shape file
 - 6) All India irrigation command boundary shape file
 - 7) IMD 0.25 degree Gridded Rainfall images (1984-2015)
 - 8) IMD 1 degree Gridded Mean Temperature images (1984-2015)
 - 9) WRA Manual (version 2) in softcopy and hardcopy
 - 10) Pilot study report in softcopy

Capacity Building and Technical Collaboration on Reassessment of WA

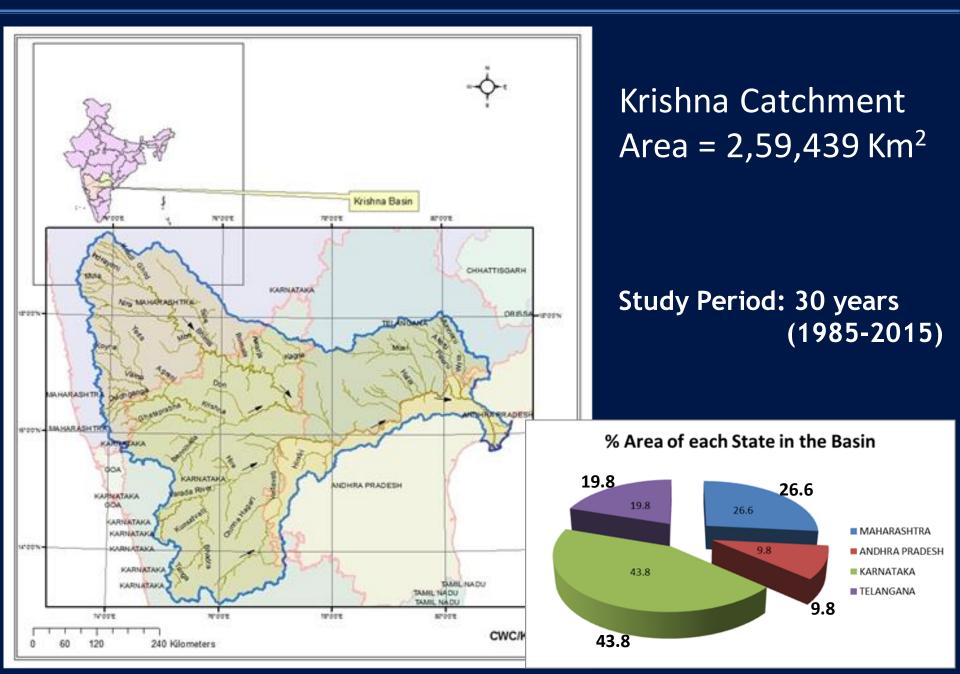
- NRSC Developed customized Water Resources Assessment Tool (WRAT) for the benefit of CWC Officers.
- WRAT computes water resources at basin scale using geo-spatial data sets. The WRA tool is platform independent and does not need Image analysis/GIS software.

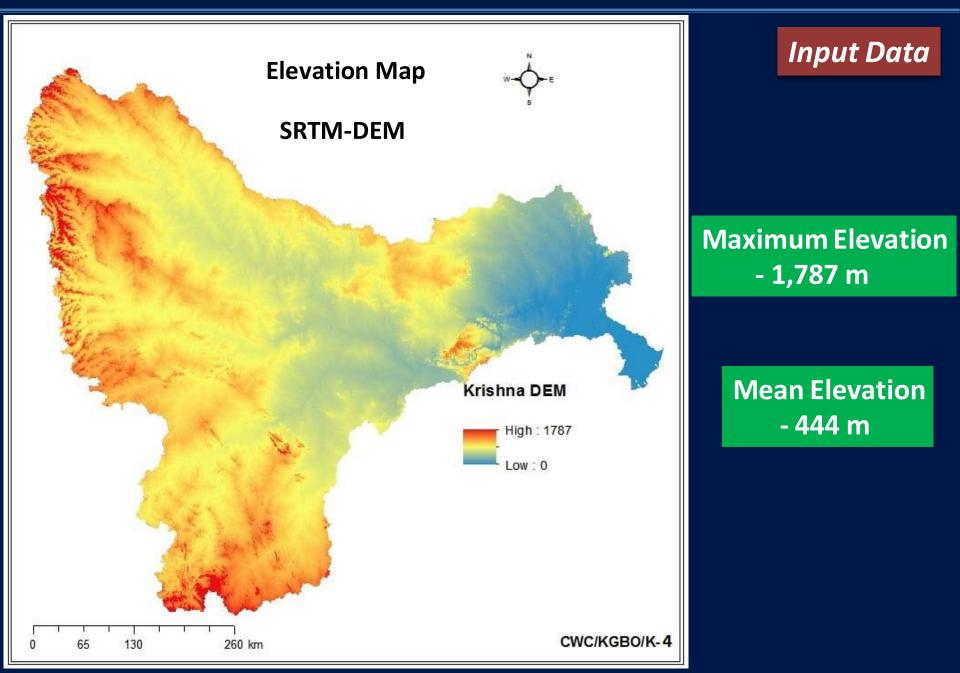
Input Files

- Daily Rainfall file (each containing 365/366 layers depending on whether the year is a leap year or not) for years; eg:2004,2005
- Daily temperature file (same format as used for rainfall).
- LULC file for the year; eg: 2004-2005 (for the basin which you want to assess).
- Command area file(each pixel should be either 1 or 0 depending on whether the pixel lies in the within boundary or outside boundary). This will be the same file for all the years
- Soils type file & sub-basin file(both in thematic raster format).
- Soil moisture & Reservoir mask if available (both in thematic raster format).

Capacity Building and Technical Collaboration on Reassessment of WA

WRA Tool


c:\users\vvrao\documents\visual studio 2013\Projects\wrat\x64\Release\wrat.exe	
Water Resources assessment tool v1.0.0 Gurrent Hydrologic year: 2004-2005	
Computing Monthly rainfallDone	
Computing Monthly mean temperatureDone	
Generating water holding capacity imageDone	
Computing petDone	
Computing revised PETDone	
Computing revised PDone	
Computing difference between P_revised and PET_revisedDone	
Computing APWLDone	
Computing Soil MoistureDone	
Computing change in soil moistureDone	
Computing AETDone	
Computing DeficitDone	
Computing SurplusDone	
Generating subbasin wise RO tableDone	
Generating AET ECII and Evaporation from reservoirsDone	
Time elapsed: 8 Mins 25 Secs	
	Name
	1 Total I I I I


Outputs – Images and Text files

Name	Date modified	Туре	Size
AET_ECII.txt	9/30/2015 10:44 AM	Text Document	1 KB
🛋 AET_Jun_2004_May_2005.img	9/30/2015 11:48 AM	IMG File	264,641 KB
🛋 AnnualHeatIndex_Jun_2004_May_2005.img	9/30/2015 10:36 AM	IMG File	9 KB
APWL_Jun_2004_May_2005.img	9/30/2015 11:35 AM	IMG File	151,210 KB
Command_area_regions_reproj.img	9/30/2015 10:57 AM	IMG File	330 KB
Deficit_Jun_2004_May_2005.img	9/30/2015 11:52 AM	IMG File	149,181 KB
latfactor_reproj.img	9/30/2015 10:36 AM	IMG File	35 KB
Monthly_Rainfall_jun_2004_may_2005.img	9/30/2015 10:36 AM	IMG File	100 KB
Monthly_rainfall_reprojected_Jun_2004	9/30/2015 10:56 AM	IMG File	7,461 KB
🖍 Montlhy_Temperature_jun_2004_may_20	9/30/2015 10:36 AM	IMG File	54 KB
P_rev_minus_PET_rev_Jun_2004_May_200	9/30/2015 10:40 AM	IMG File	256,876 KB
P_revised_Jun_2004_May_2005.img	9/30/2015 10:56 AM	IMG File	25,538 KB
PET_Jun_2004_May_2005.img	9/30/2015 10:36 AM	IMG File	58 KB
PET_reprojected_Jun_2004_May_2005.img	9/30/2015 10:37 AM	IMG File	6,586 KB
PET_revised_Jun_2004_May_2005.img	9/30/2015 10:56 AM	IMG File	254,661 KB
🖍 Soil_Moisture_Change_Jun_2004_May_20	9/30/2015 11:35 AM	IMG File	205,419 KB
Soil_Moisture_Jun_2004_May_2005.img	9/30/2015 11:35 AM	IMG File	257,101 KB
📄 subbasin_wise.txt	9/30/2015 10:44 AM	Text Document	1 KB
🖍 Surplus_Jun_2004_May_2005.img	9/30/2015 11:53 AM	IMG File	125,311 KB
KHC_Jun_2004_May_2005.img	9/30/2015 10:36 AM	IMG File	19,958 KB

Handholding

- Mid-term review workshop was conducted at NRSC for CWC officers during 05-09, Dec 2016 to review the status of the project work and clarify the methodological aspects with full-fledged hands on exercise.
- Basin-Specific issues and Complexities are being addressed through CWC and NRSC interaction meetings
- Hand holding and technical guidance continued till the completion of the project
- The Study was completed by Aug, 2017
- Individual basin-wise reports were prepared
- Final summary report was prepared

Other

wasteland_

7.33%

Deciduous

forest

4.32%

0.04%

Littoral

swamp

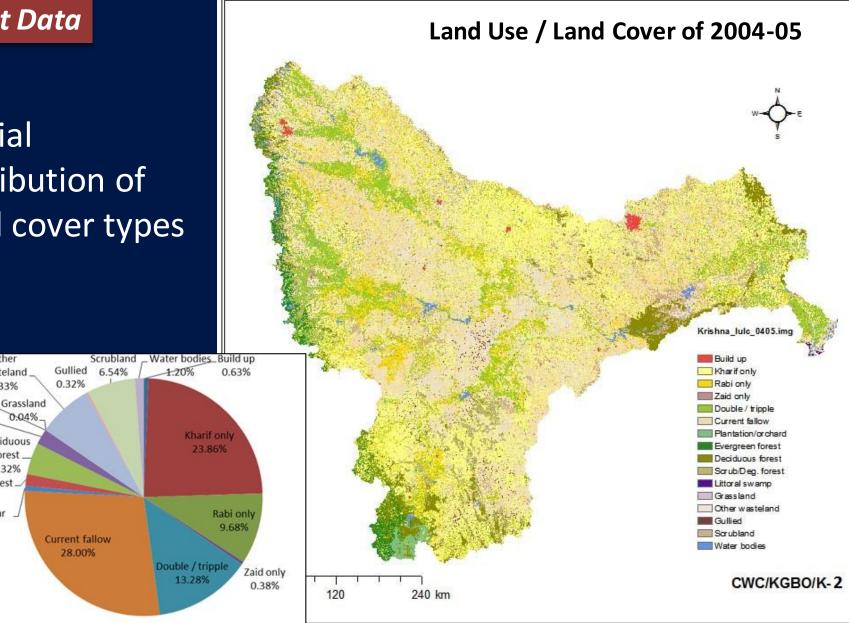
0.03%

Scrub/Deg.

forest

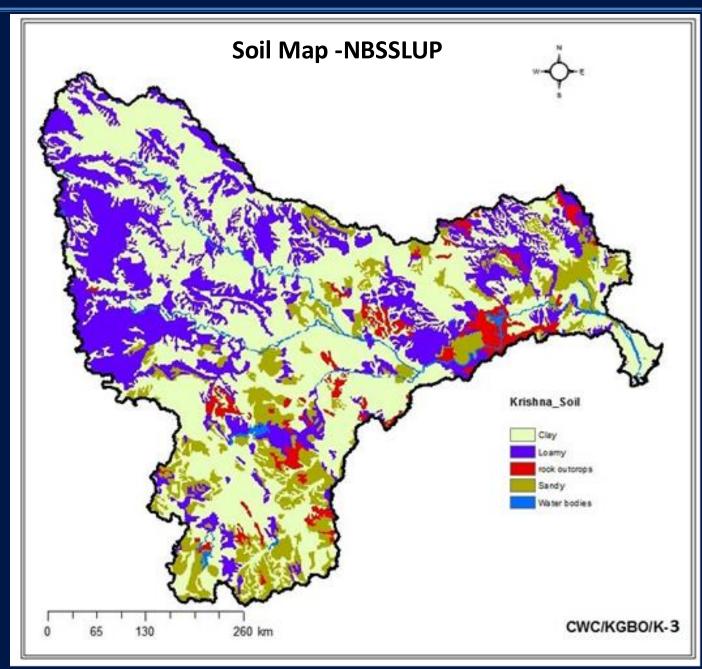
2.10%

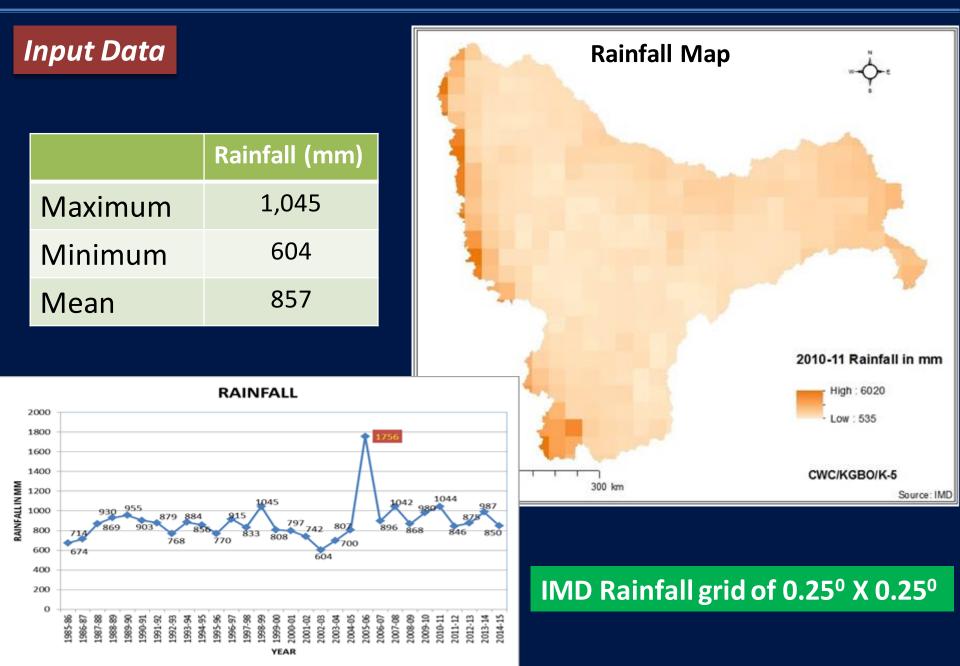
Evergreen forest

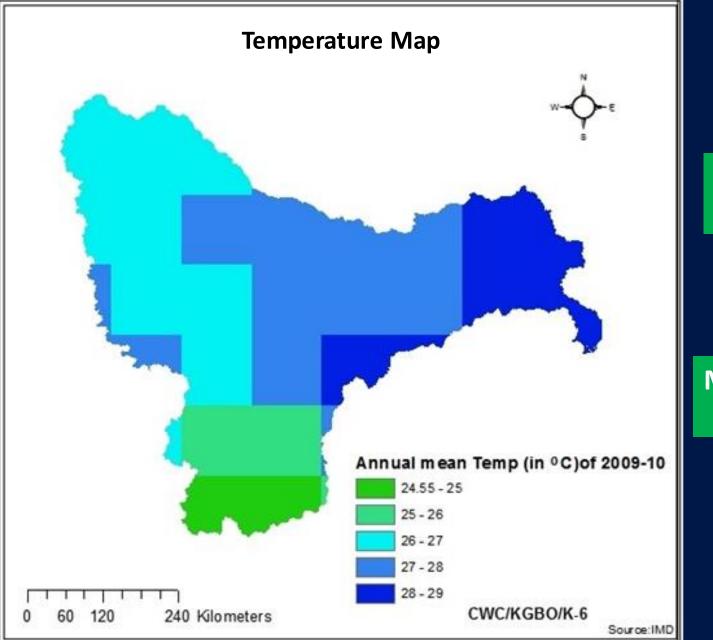

1.58%

Plantation/orchar

d

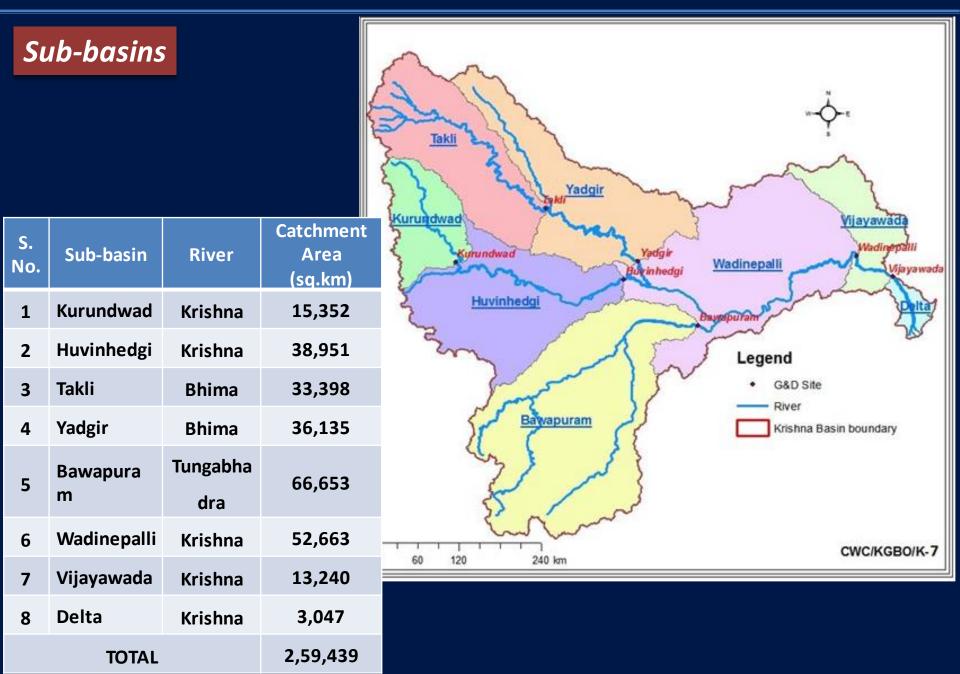

0.71%


Spatial distribution of Land cover types

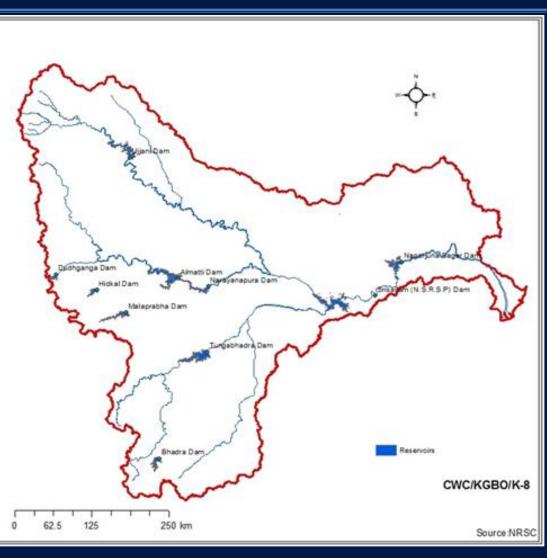


Input Data

Spatial distribution of Soil types

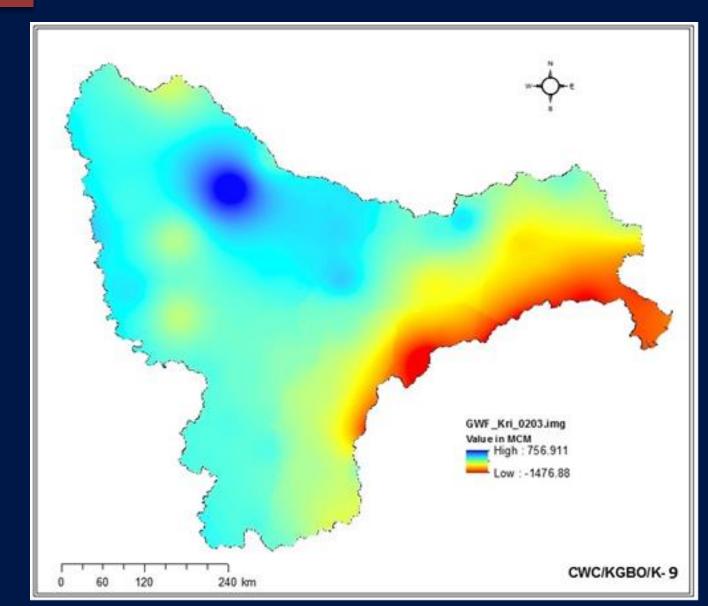


Input Data


IMD Temperature grid of 1^o X 1^o

Mean Temperature - 27⁰ C

Surface Water Flux


S. No.	Reservoir	River	Year
1	Khadakwasla	Mutha	1879
2	Tungabhadra	Tungabhadra	1953
3	Koyna	Koyna	1964
4	Linganamakki	Sharavathi	1964
5	Bhadra	Bhadra	1965
6	Nagarjuna sagar	Krishna	1967
7	Ghataprabha	Ghataprabha	1977
8	Ujjani	Krishna	1980
9	Srisailam	Krishna	1981
10	Narayanpur	Krishna	1982
11	Supa	Kali	1987
12	Jurala	Krishna	1995
13	Almatti	Krishna	1999

Major Reservoirs

Ground Water Flux

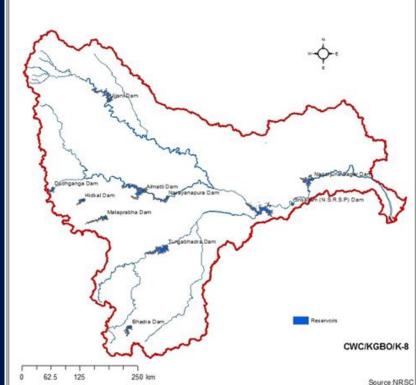
Ground water abstractions for 2002-2003

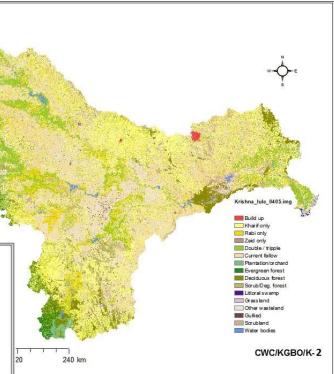
DIL Flux

Census data: 1991, 2001, 2011

Industrial demand = 50% of domestic demand

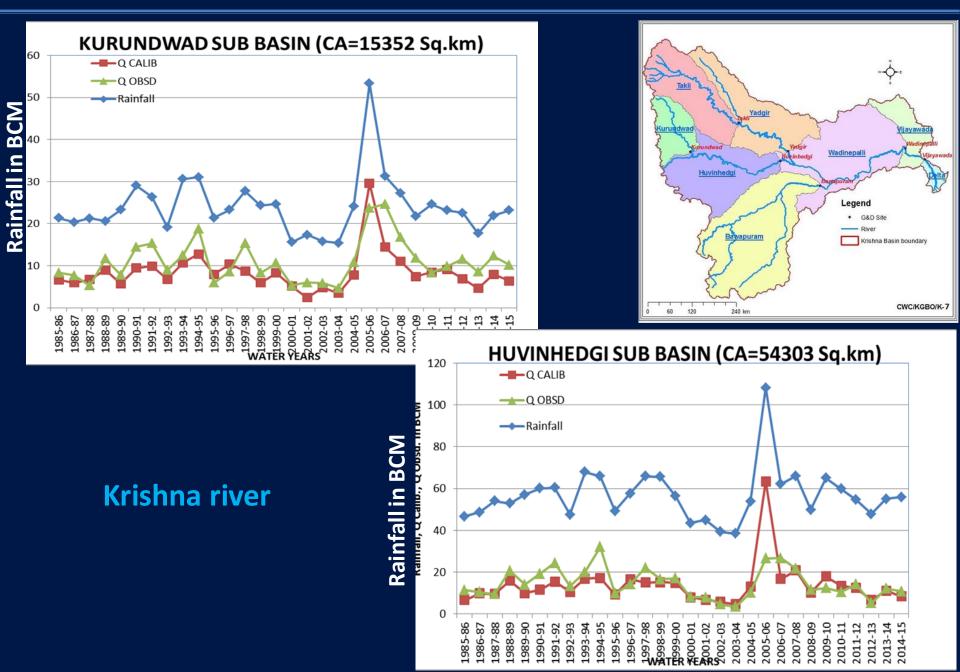
Live stock Census data 1982, 1990, 2003, 2012

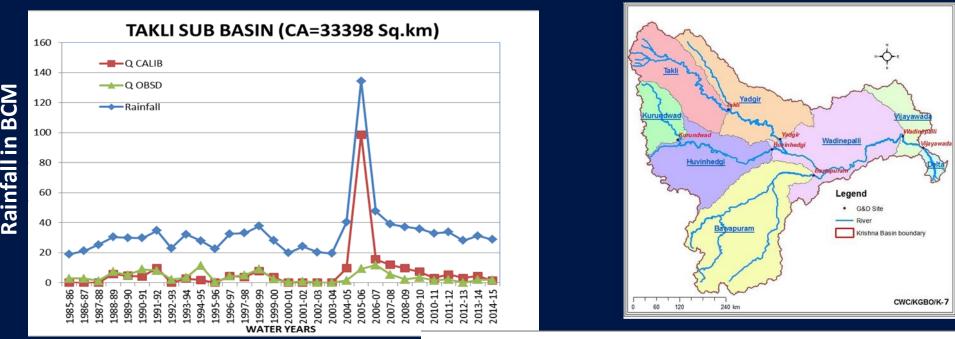

Туре	Quantity (lpcd)
Urban	140
Rural	70
Livestock	30


Consumption=15%

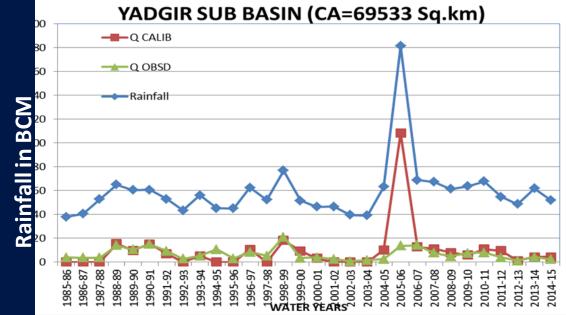
Evaporation Losses

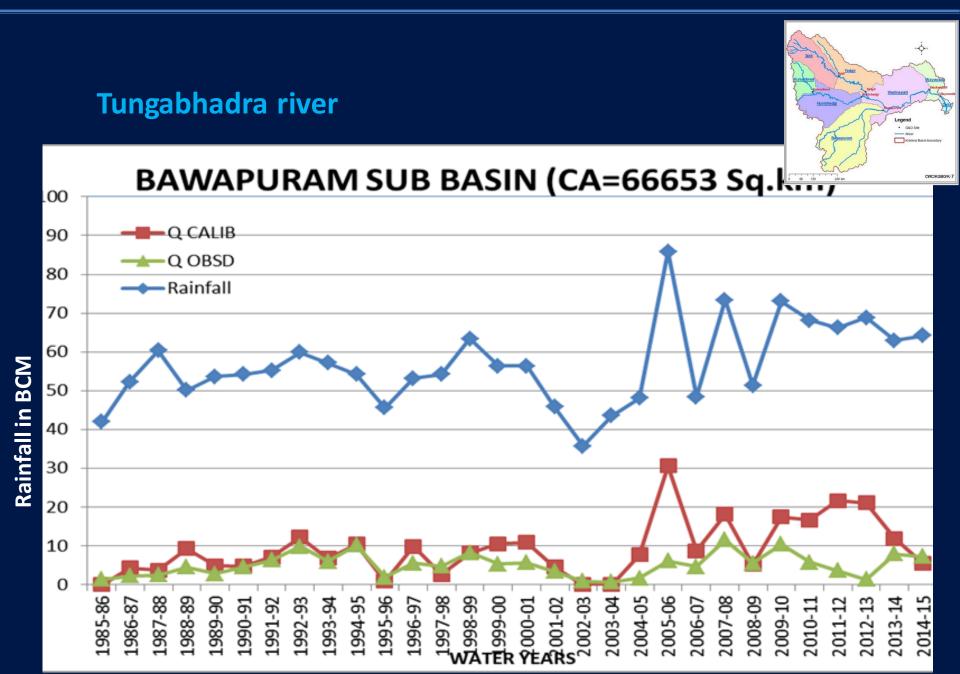
- Water bodies > 1 hectare
- water bodies area of respective dams was removed based on the year of completion of the dam

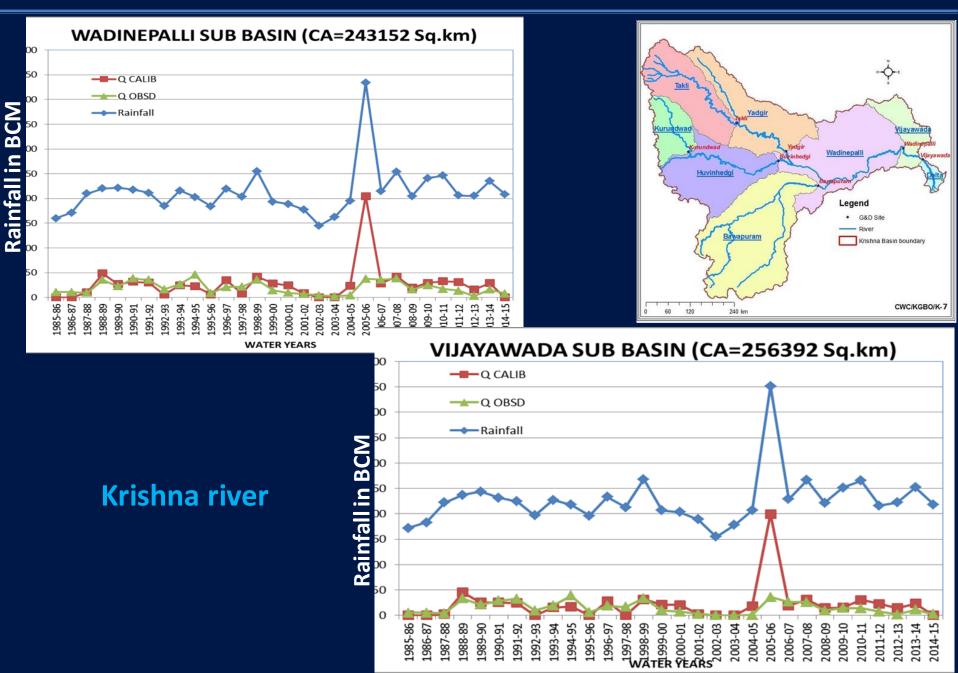

Vegetation Coefficients



	Region No	o. 1 (Ahmedna	gar)		F	Region No. 4 (Belgaum)			
	Kharif only	Rabi only	Double/ Triple	Zaid only	Kharif only	Rabi only	Double/ Triple	Zaid only	
	Bajra	Jowar	Sugarcane		Maize	Jowar	Sugarcane		
June	0.50	0.50	0.74	0.50	0.50	0.50	0.74	0.50	
July	0.50	0.50	0.50	0.50	0.55	0.50	0.50	0.50	
August	1.00	0.50	0.55	0.50	0.75	0.50	0.55	0.50	
September	1.10	0.50	0.80	0.50	1.25	0.50	0.80	0.50	
October	0.55	0.50	0.90	0.50	0.80	0.50	0.90	0.50	
November	0.50	0.50	1.10	0.50	0.55	0.50	1.10	0.50	
December	0.50	0.52	1.20	0.50	0.50	0.52	1.20	0.50	
January	0.50	0.71	1.20	0.50	0.50	0.71	1.20	0.50	
February	0.50	0.62	1.20	0.50	0.50	0.62	1.20	0.50	
March	0.50	0.55	1.20	0.75	0.50	0.55	1.20	0.75	
April	0.50	0.50	0.90	1.05	0.50	0.50	0.90	1.05	


Calibrated runoff along with observed discharge at Kurundwad on Krishna River


BASIN/SUB-BASIN	I NAME :	Kurundw	ad Catchment Area = 15,	352 Sq.Km		-						
YEAR	RAIN	FALL	AET (fro m irrig ated area Irrig	atio n Sup port (ECII	DLI D	GW Flux	Rese rvoir Flux Exp	ort fro m the Basi	n Q- brat ed	Qbs erve d	Rese rvoir Evap	Wat er Avai labili ty
	mm	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)
1	2(a)	2(b)	3	4	5	6	7	8	9	10	11	12=4+5+6+7 +8+9+11
1985-86	1391	21.36	4.20	1.30	0.08	-0.11	0.26	2.46	6.62	8.37	0.11	10.72
1986-87	1327	20.37	4.34	1.08	0.08	0.19	-0.40	2.46	5.90	7.68	0.13	9.44
1987-88	1386	21.27	5.13	1.14	0.08	0.04	0.16	1.85	6.72	5.25	0.15	10.14
1988-89	1343	20.62	4.27	1.38	0.09	0.18	0.14	2.46	9.01	11.70	0.11	13.37
1989-90	1517	23.28	7.18	4.21	0.09	0.14	-0.19	2.21	5.76	7.83	0.13	12.34
1990-91	1889	29.00	7.51	3.96	0.09	0.04	0.21	2.21	9.43	14.47	0.13	16.07
1991-92	1719	26.39	7.34	4.47	0.09	-0.06	-0.30	2.21	9.90	15.35	0.11	16.43
1992-93	1251	19.20	5.24	1.75	0.09	-0.18	0.07	2.21	6.76	8.97	0.12	10.81
1993-94	1992	30.57	7.66	3.55	0.09	0.56	0.03	2.34	10.70	12.53	0.15	17.43
1994-95	2021	31.03	7.30	3.63	0.09	-0.14	-0.26	2.50	12.78	18.79	0.14	18.74
1995-96	1394	21.39	4.69	1.70	0.10	-0.14	0.08	1.91	7.93	5.92	0.12	11.69
1996-97	1518	23.30	4.94	1.20	0.10	0.23	0.62	1.91	10.38	8.61	0.17	14.60
1997-98	1805	27.72	9.00	5.16	0.10	-0.18	-0.27	1.91	8.76	15.38	0.16	15.64
1998-99	1583	24.30	7.80	4.28	0.10	0.35	0.33	1.91	5.93	8.27	0.19	13.09
1999-00	1608	24.68	7.25	4.10	0.10	-0.23	-0.17	1.91	8.28	10.62	0.16	14.17
2000-01	1015	15.58	5.34	1.70	0.10	-0.19	-0.13	1.92	5.15	5.35	0.16	8.72
2001-02	1129	17.34	8.49	4.96	0.11	0.08	-0.02	1.91	2.44	6.03	0.16	9.64
2002-03	1027	15.77	5.05	1.96	0.11	-0.29	0.06	1.91	4.81	5.89	0.14	8.70
2003-04	1001	15.37	5.15	2.00	0.11	-0.26	-0.10	1.98	3.47	4.71	0.15	7.36
2004-05	1568	24.07	7.57	3.82	0.11	0.32	0.14	2.13	7.76	10.80	0.16	14.44
2005-06	3473	53.31	7.48	3.38	0.11	0.17	0.06	2.56	29.53	23.67	0.18	36.00
2006-07	2041	31.33	7.47	4.08	0.12	0.20	0.07	2.40	14.40	24.68	0.15	21.41
2007-08	1777	27.28	8.13	4.65	0.12	-0.27	0.20	2.17	11.11	16.76	0.15	18.13
2008-09	1420	21.80	6.09	2.75	0.12	0.36	0.05	1.93	7.46	11.81	0.17	12.84
2009-10	1603	24.61	7.84	4.32	0.13	-0.03	-0.17	2.29	8.45	8.35	0.19	15.19
2010-11	1510	23.18	6.30	2.82	0.13	0.05	-0.06	2.12	9.13	9.83	0.19	14.38
2011-12	1470	22.56	7.63	4.87	0.14	-0.15	0.01	2.02	6.90	11.58	0.18	13.97
2012-13	1152	17.69	6.13	2.80	0.14	-0.24	-0.19	1.98	4.66	8.57	0.20	9.36
2013-14	1429	21.94	7.78	4.15	0.15	0.31	-0.47	2.53	7.94	12.35	0.23	14.83
2014-15	1508	23.16	8.77	4.59	0.16	-0.08	0.44	2.03	6.39	10.15	0.27	13.79
Avg	1562	23.98	6.64	3.19	0.11	0.02	0.01	2.15	8.48	11.01	0.16	14.11
excluding 2005-06	1496	22.97	6.61	3.18	0.11	0.02	0.00	2.13	7.76	10.57	0.16	13.36

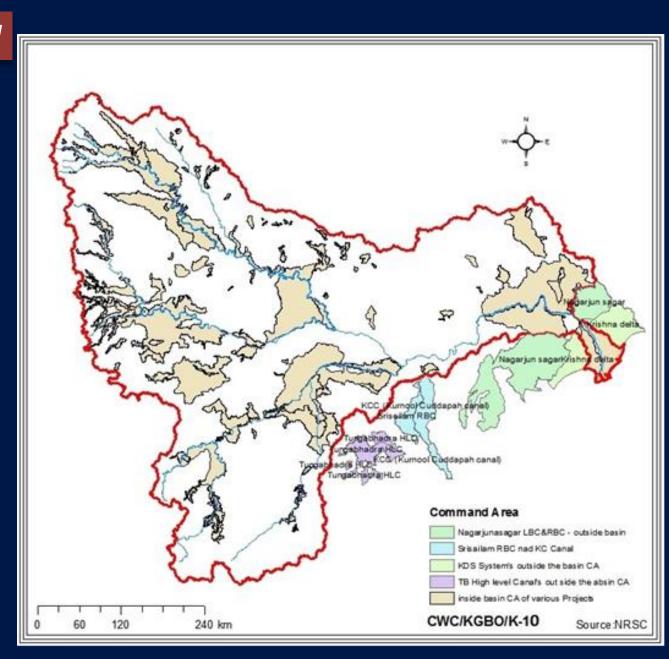


Bhima river

Calibrated Runoff

R Calibrated/computed = (**R** Model - **F** $_{\text{GW}}$ - **F** $_{\text{R}}$ - **F** $_{\text{DIL}}$) \approx **R** $_{\text{O}}$

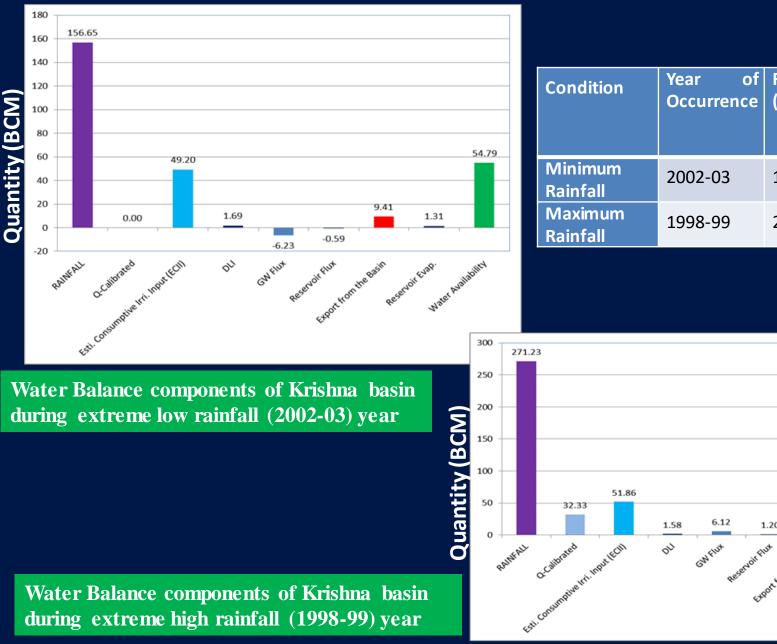
WRA


Mean WRA of Krishna basin = 102 BCM

Previous Estimates

S.No.	Year	Authority/Method of estimation	Quantity (BCM)			
1	1901	First Irrigation Commission/using records of the surplus flow of Krishna from the greater part of its catchment extending back for a sufficient number of years to estimate the average flow as accurately as possible	84.863			
2	1949	CW&PC/Khosla's empirical formula	44.923			
3	1953	The technical committee for the optimum utilisation of Krishna and Godavari waters	46.872			
4	1960	CW&PC /Statistical analysis of flow data wherever available and rainfall-runoff relationships wherever data were meagre.				
5	1962	The Krishna Godavari Commission-aggregation of average annual yields of all sub basins	62.784			
6	1973	The KWDT	67.790			
7	1993	CWC	78.124			

Irrigation Command


- THLC
- Srisailam
- NSP

Outward Diversions from Krishna Basin

S.No.	Name of		tity of on Water	Remarks
	Projects	(BCM)	(TMC)	
1	Koyna Dam	2.15	76	The diversions takes place for Power
2	Tata Dams	1.16	41	generation and it eventually flow out of the basin (Westward) data obtained from Govt. of Maharashtra.
3	Prakasham Barrage	3.54	125	Data for 1985-86 to 2006-07 was taken from the data submitted by Govt. of AP to KWDT II and later data has been downloaded from http://cadarsms.cgg.g ov.in which contains for entire KDS system. Hence 3.54 BCM is considered for outside the basin component and remaining was assumed to be utilised in delta area within basin
4	TGP	0.42	15	Chennai water supply
5	ECII component for TB-HLC	0.29	10	
6	ECII component for NSP/Srisailam	4.35	154	Calculated based on project command area outside the basin
	Total	11.91	420	

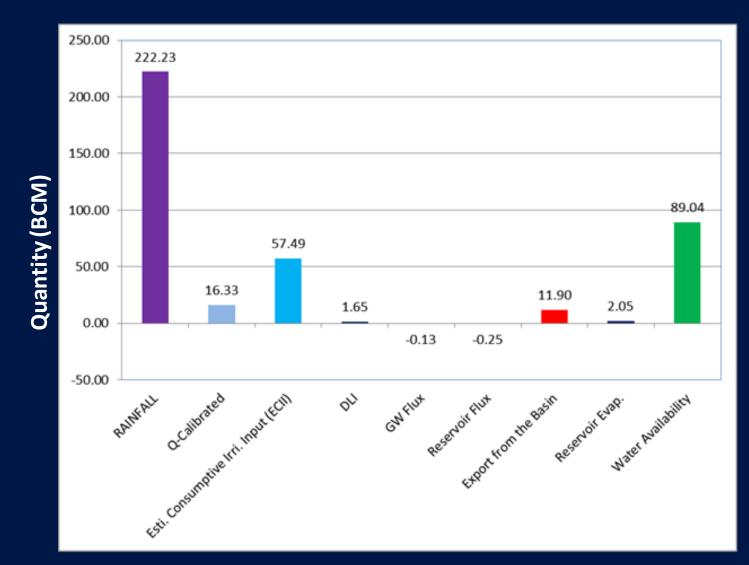
	YEAR	Model Runoff	Irrigation Support (ECII)	DLI	GW Flux	Reservoir Flux	Export from the Basin	Q- Calibrated
Mator		(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)	(BCM)
Water	1985-86	49.48	52.55	1.24	-5.52	-0.14	12.69	0.00
balance	1986-87	54.16	47.85	1.26	1.19	-1.51	13.66	0.00
Dalance	1987-88	72.76	51.33	1.28	3.90	0.89	11.95	3.41
components	1988-89	115.09	51.77	1.31	2.51	-0.68	13.40	46.79
	1989-90	96.33	52.05	1.33	2.51	0.50	13.32	26.63
of Krishna	1990-91	89.98	51.41	1.35	-2.29	0.52	12.65	26.34
	1991-92	92.27	57.14	1.38	-2.54	-0.53	11.09	25.74
basin	1992-93	68.65	56.91	1.40	-0.09	0.00	11.31	0.00
	1993-94	82.87	51.99	1.43	1.80	-1.08	12.70	16.02
	1994-95	86.63	55.16	1.46	-1.54	-1.12	13.63	19.04
	1995-96	65.37	53.04	1.49	0.01	-0.18	10.57	0.45
	1996-97	93.76	45.48	1.52	3.78	2.85	10.70	29.44
	1997-98	75.53	65.41	1.54	-1.09	0.46	13.31	0.00
	1998-99	106.06	51.86	1.58	6.12	1.20	12.97	32.33
	1999-00	80.32	50.84	1.61	-4.34	-2.43	12.86	21.78
	2000-01	80.62	43.95	1.64	1.37	0.04	11.81	21.82
	2001-02	66.79	53.82	1.67	-1.72	-0.83	10.25	3.59
	2002-03	42.37	49.20	1.69	-6.23	-0.59	9.41	0.00
	2003-04	44.71	46.52	1.72	1.71	-1.16	8.35	0.00
	2004-05	81.21	49.72	1.75	-1.12	1.96	10.00	18.89
	2005-06	291.76	60.67	1.79	12.29	4.37	11.98	200.66
	2006-07	105.41	74.92	1.82	-4.96	-1.94	14.62	20.95
	2007-08	122.51	67.73	1.86	6.92	2.70	11.81	31.49
	2008-09	92.25	69.37	1.90	-2.50	-3.77	12.09	15.15
	2009-10	104.19	67.49	1.94	2.43	2.26	13.77	16.30
	2010-11	113.90	63.75	1.99	2.81	2.82	9.87	32.66
	2011-12	104.67	78.40	2.05	-7.84	-4.94	13.22	23.78
	2012-13	89.95	67.01	2.11	-3.09	-0.82	8.64	16.11
	2013-14	106.23	60.94	2.17	6.63	-1.07	12.66	24.90
	2014-15	79.65	79.47	2.25	-2.67	-0.47	11.85	0.00
	Avg	91.85	57.59	1.65	0.28	-0.09	11.90	22.48

Condition	Year of Occurrence	Rainfall (BCM)	Water Resources Availability (BCM)
Minimum Rainfall	2002-03	156.65	54.79
Maximum Rainfall	1998-99	271.23	107.96

107.96

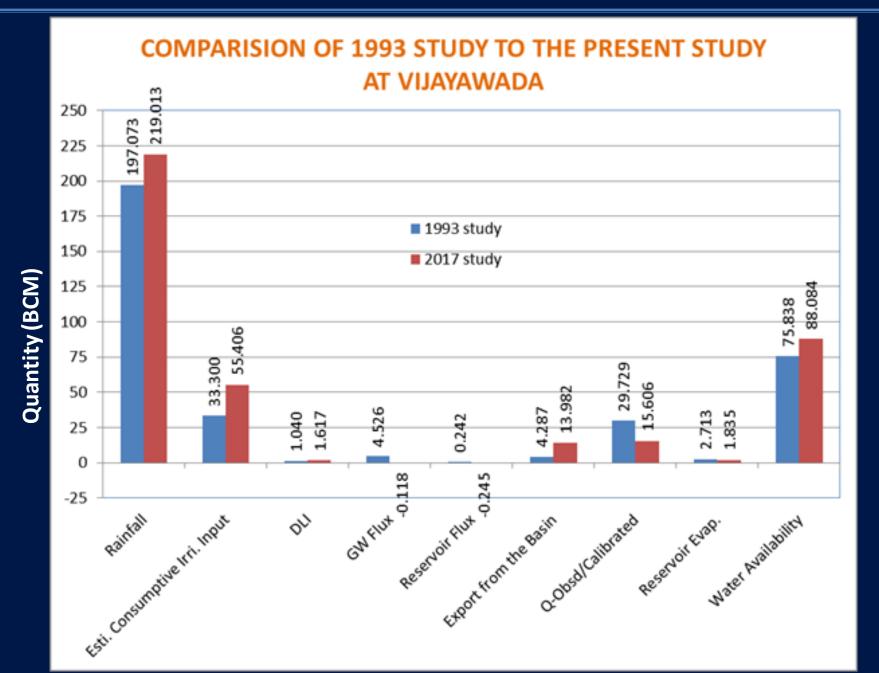
12.97

1.20


Export From the Basin

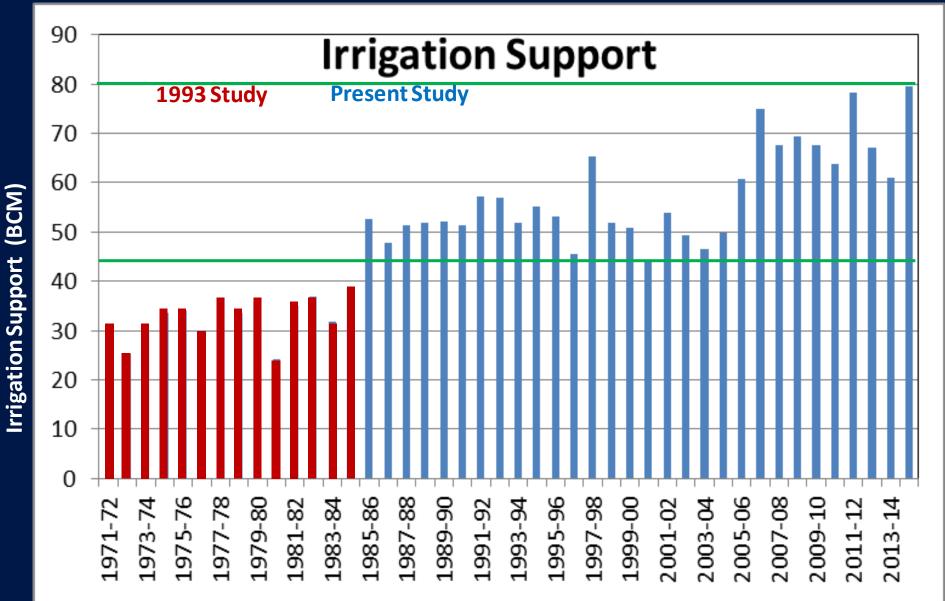
1.90

Reservoir Even.


Water Availability

Water Balance components of Krishna basin (mean of 29 years)

1993 CWC Study

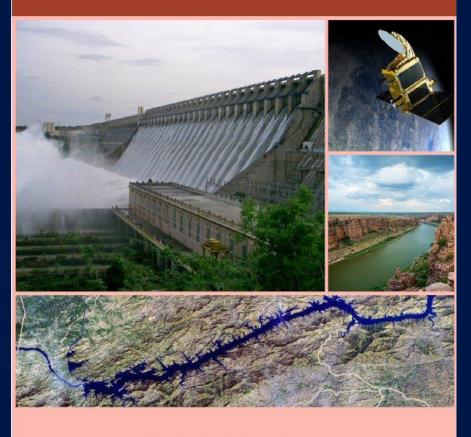

- The observed flows were corrected for the upstream abstractions to arrive at the natural flows
- Observed flows at Vijayawada for 1971-72 to 1984-85 (14 Years) with catchment area of 2,51,369 sq.km
- Irrigation (R_{IR}) abstraction was obtained from records maintained by the irrigation project authorities wherever available.
- Withdrawals for domestic taken as 70 lpcd rural and 200 lpcd urban and 50 lpcd for livestock.
- Industrial water requirements is taken as domestic water requirement.
- Ground water abstractions are computed by considering linear variation from the withdrawal (CGWB) for the year 1984 and 1967-68.
- 10% of the abstractions for irrigation and 80% of the abstractions for domestic and industrial purposes have been considered as return flows.
- The data on evaporation losses are available for almost all the major projects in the basins. For medium and miner projects suitable assumptions have been made in this respect.

Comparison of 1993 and Present study

	1993	2017
Catchment Area	2,58,950 sq.km	2,59,439 sq.km
Mean annual rainfall	197 BCM	222 BCM (11% higher)
WRA in Delta	In 1993 estimate, area proportionate approach was adopted to estimate delta area water resources. The delta area was estimated at 7,581 sq.km.	The delta area was estimated is 3,047 sq.km
Outward diversions	1993 CWC estimate considered the westward diversions from Krishna Basin from Koyna Dam and TATA dams (Private Dams) in Krishna Upper catchment and Bhima Upper catchments.	The diversions taking place from Tungabhadra Dam on Tungabhadra river, from Nagarjunasagar Dam/Srisailam Dam, for Chennai water supply, and for Krishna Delta System for various purposes were also considered in the present study

KRISHNA BASIN

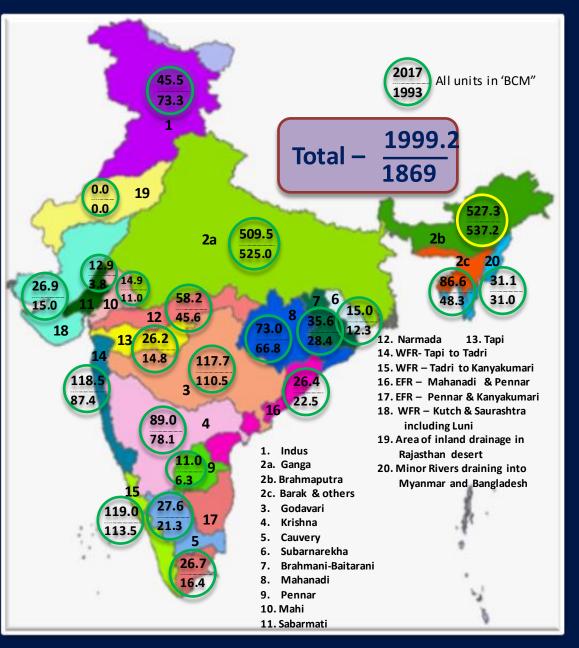
- Intra basin transfers
- Inter basin transfers
- Yearly variation in Irrigation Utilisation
- Annual Water Balance components
- Impact of change in Land use/Land cover
- Changes due to Water Infrastructure development



REASSESSMENT OF WATER AVAILABILITY IN INDIA USING SPACE INPUTS

REASSESSMENT OF WATER AVAILABILITY IN INDIA USING SPACE INPUTS

(VOLUME – I)



BASIN PLANNING & MANAGEMENT ORGANISATION

CENTRAL WATER COMMISSION NEW DELHI - 110 066 JUNE 2019

BASIN PLANNING & MANAGEMENT ORGANISATION CENTRAL WATER COMMISSION NEW DELHI - 110 066 JUNE 2019

- The assessment was completed for all 20 river basins for a period of 30 years
- The total mean WRA of the country was assessed as 1999.2 BCM (CA=323 Mha) for mean annual rainfall of 3880 BCM
- Increase in WRA was observed in some river basins like Barak, Mahanadi, Godavari, Narmada, Sabarmati, etc
- Decrease in WRA was observed in some river basins like Indus, Brahmaputra, Ganga, etc
- No variations was observed in WRA in some river basins like Godavari, Mahanadi, WFR, etc

Comparison of 1993 and Present study

S.No	1993	2017
1	All basins were not studied	All basins were studied
2	Period of study was not uniform	Period of study was uniform (1985-2015)
3	Rainfall is not considered	Rainfall grids were used
4	Utilisation data –assumptions were made	Irrigation consumptive use estimated using HM approach
5	Return flows assumed	No need of estimation
6	Ground water data for few basins and few years were used	Ground flux data for all basins computed

Major Benefits

- A shift from empirical method to Hydrologic Modelling using space inputs
- Latest update on country's water resources potential
- Impact of land use/land cover changes on water resources availability
- Standard Framework for periodic re-assessment and assessment under future climate scenarios

Limitations:

Average water resources availability is assessed using 30 year period data.
 Availability of land use/land cover for historic years prior to 2004-05 will improve accuracy of assessment

THANK YOU